Assessment of Three Tropospheric Delay Models (IGGtrop, EGNOS and UNB3m) Based on Precise Point Positioning in the Chinese Region
نویسندگان
چکیده
Tropospheric delays are one of the main sources of errors in the Global Navigation Satellite System (GNSS). They are usually corrected by using tropospheric delay models, which makes the accuracy of the models rather critical for accurate positioning. To provide references for suitable models to be chosen for GNSS users in China, we conduct herein a comprehensive study of the performances of the IGGtrop, EGNOS and UNB3m models in China. Firstly, we assess the models using 5 years' Global Positioning System (GPS) derived Zenith Tropospheric Delay (ZTD) series from 25 stations of the Crustal Movement Observation Network of China (CMONOC). Then we study the effects of the models on satellite positioning by using various Precise Point Positioning (PPP) cases with different tropospheric delay resolutions, the observation data processed in PPP is from 21 base stations of CMONOC for a whole year of 2012. The results show that: (1) the Root Mean Square (RMS) of the IGGtrop model is about 4.4 cm, which improves the accuracy of ZTD estimations by about 24% for EGNOS and 19% for UNB3m; (2) The positioning error in the vertical component of the PPP solution obtained by using the IGGtrop model is about 15.0 cm, which is about 30% and 21% smaller than those of the EGNOS and UNB3m models, respectively. In summary, the IGGtrop model achieves the best performance among the three models in the Chinese region.
منابع مشابه
Investigation of MODIS mission capability in tropospheric delay estimation for precise point positioning
Tropospheric delay is always considered as one of the factors limiting the accuracy of GPS. In this paper, the three-dimensional ray tracing technique is proposed to calculate the tropospheric delay. The ability of the MODIS mission to calculate the tropospheric delay is also examined. For this purpose, an area in central Europe was selected and a MODIS acquisition on 2008/08/01 was studied. In...
متن کاملAccuracy Improvement of Tropospheric Delay Interpolation in RTK Networks
The effect of troposphere on the signals emitted from global navigation satellite system (GNSS) satellites, appears as an extra delay in the measurement of the signal traveling from the satellite to receiver. This delay depends on the temperature, pressure, humidity as well as the transmitter and receiver antennas location. In GNSS positioning, tropospheric delay effects on accuracy of differen...
متن کاملAnalysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages
As Global Navigation Satellite System (GNSS) signals travel through the troposphere, a tropospheric delay occurs due to a change in the refractive index of the medium. The Precise Point Positioning (PPP) technique can achieve centimeter/millimeter positioning accuracy with only one GNSS receiver. The Zenith Tropospheric Delay (ZTD) is estimated alongside with the position unknowns in PPP. Estim...
متن کاملEstimation and Analysis of Precipitable Water Vapor Using GPS Data and Satellite Altimeter
Determination of water vapor in the atmosphere plays an important role in forecasting weather conditions and precipitation studies. For this reason, it is very important to study the tropospheric delay, especially the wet component, which is due to the presence of water vapor in the atmosphere. In this paper, the amount of water vapor was estimated by altimeter satellite radiometer and GPS data...
متن کاملEvaluation of Empirical Tropospheric Models Using Satellite-Tracking Tropospheric Wet Delays with Water Vapor Radiometer at Tongji, China
An empirical tropospheric delay model, together with a mapping function, is commonly used to correct the tropospheric errors in global navigation satellite system (GNSS) processing. As is well-known, the accuracy of tropospheric delay models relies mainly on the correction efficiency for tropospheric wet delays. In this paper, we evaluate the accuracy of three tropospheric delay models, togethe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016